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Overview E4SFowER

Timeline Barriers
« Start date: 5/1/2011 e Barriers addressed
e End date: 4/30/2014 - L%B Perfqrmance and Lifetime
— LiB Efficiency

e Project 97% complete _ LiB Safety

— Computer tools for design exploration

Budget Partners
 Total project funding: $3.0M e Ford

— $1.5M (DOE) e Johnson Controls
— $1.5M (cost share)

_ e Penn State
— Fed funds received to date:
$1.276M * NREL

« ORNL

Funding provided by Dave Howell of the DOE Vehicle Technologies Program .
The activity is managed by Brian Cunningham of Vehicle Technologies.
Subcontracted by NREL, Shriram Santhanagopalan Technical Monitor




Project Objectives - Relevance EfSrPoweR

Develop an electrochemical/thermal (ECT) coupled model for
large-format automotive Li-1on batteries (cells and packs)

Create a fast & robust tool for realistic geometries

Develop a comprehensive materials database

Integrate ECT3D software with CAEBAT Open Architecture
Standard (OAS)

Aide OEMs and cell/pack developers in accelerating the adoption
of large-format Li-10on technology required for EV & PHEV

Develop a virtual environment to reduce the time required for
design, build and test of Li-1on batteries

— Performance

— Safety

— Life

— Efficiency

Support DOE CAEBAT activity



Project Milestones & Activities EfSrPoweR

Recent Milestones Completed

M17: Deliver updated software to partners with OAS compatibility
M18: Complete data of electrode potential curves for series of aged cells
M?22: Additional data for LFP cathode and LTO anode

M23: Report on experimental data for exchange current density

M?24: Report on current and temperature validation

M26 & 27: Report on life model validation

M29: Report on 3-electrode cell experiments for performance and life

Milestones in Progress

M25: Final report on software

M28: Deliver final software to partners

M30: Final report on temperature distribution data
M31: Final report on OAS compatibility

M32: Final project report



Approach — Supporting CAEBAT Activity E#SrFower
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Approach — Materials Database EfSrFoweR

Tested temperature range for materials

- » Database data acquisition complete
* Active cathode and anode
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Cathod ials: materials given to the left
Anode Materials: athode materials: «  Electrolyte
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e LTO
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of coin cells

e Massive undertaking spanning length of
project
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Modeling parameters needed at low-T, high-T, wide range of chemical compositions and similar
conditions of interest for automotive Li-ion batteries and packs.



Electrochemical Processes

- electrochemical reactions

- solid state diffusion

- ion transport through
electrolyte

- charge transfer

Heat generation rate
9= Zasjinj(% +11,)
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* Understanding thermal

phenomena & thermal control

has huge impact on

— Battery safety
— Cycle life

— Battery management system

— Cost

Temperature-dependent
physico-chemical properties
11
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Thermal Processes

- conservation of thermal energy

—6( pT):V-),VT+q
ot

Model predictions

- potential and current curves

- temperature history/distribution
- active material utilization

- current distribution

* Electrochemical-thermal (ECT) coupling

required for

— Safety simulations

— Thermal runaway

— High power, low-T operation

— Heating from subzero environment



Technical Accomplishments E4SFowER

e Com
e Valid

vleted data acquisition for materials database
ated efficient, electrochemical-thermal (ECT)

coup!

ed large-format cell simulation

— Performance and active materials utilization

« Validated temperature- and design-dependent life model
— LFP/graphite and NMC/graphite

— Us

er-defined load profile and thermal conditions

» Validated safety model
 ECT-coupled pack model

* Demonstrated co-simulation with OAS

* Software commercially available



Accomplishments — Validation/Performance E4SFower
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Accomplishments — Validation/Performance E4SFower

Temperature Rise (°C)

Cell Voltage (V)

In-situ Temperature Distribution
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Validation ongoing
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Accomplishments — Validation/Life EfSrFoweR
Commercial LFP/Graphite Cells

CC Cycling @ 25°C and 45°C Complex Cycling at Room Temperature
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On-field relevant life cycling of commercial Li-ion cells successfully captured with model at different 11
temperatures; all life models are mechanism-based and valid under wide operating conditions without calibration
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Accomplishments —Validation/Life EfSrower
NMC/Graphite Cells
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for more rigorous validation of life
mechanisms in models
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Accomplishments — Safety/Validation E4SFowER

Commercial Cell External Short

=
g » External short of one cell within
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Software developed can be used to assess the safety of commercial large-format batteries



Accomplishments — Safety

E4SFowER

Safety Simulations in ECT3D

Nail Penetration with Coated
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» Software gives coupled electrochemical-thermal
response of the cells during nail penetration events

« Time scale and locality of heating dictate ability of
safety designs to maintain cell safety
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e 20mm nail: long time scale global heating
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ECT3D is used routinely for safety evaluation of large-format cells and safety-conscious designs
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Accomplishments — Other E4SFowerR

Thermally-coupled Pack Modeling Mixed Electrode Model
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Accomplishments — OAS

E4SFowER

ECT3D Coupled to Dakota Using OAS
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ECT3D has been successfully coupled to other software via OAS



Accomplishments — Publications E4SFoweR

—  Wei Zhao, C.Y. Wang, Gang Luo, Christian E. Shaffer, “New Findings on Large Li-ion Battery Safety through Computer Simulation”,
Battery Safety 2011- Advancements in System Design, Integration, & Testing for Safety & Reliability, November 9-10, 2011, Las
Vegas, NV

— G.Luoand C.Y. Wang, A Multi-dimensional, Electrochemical-Thermal Coupled Li-ion Battery Model, Chap.6 in Lithium-Ion
Batteries: Advanced Materials and Technologies, CRC Press, 2012.
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World Congress, October 30-31, 2012, Detroit, MI

—  Shaffer, C.E., Wang, C.Y., Luo, G. and Zhao, W., “Safety Analysis Design of Lithium-ion Battery EV Pack through Computer
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—  Zhang, G., Shaffer, C. E., Wang, C. Y., & Rahn, C. D. (2013). “In-situ measurement of current distribution in a li-ion cell,” Journal of
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— Ji, Y., Wang, C.Y. (2013). “Heating strategies for Li-ion batteries operated from subzero temperatures,” Electrochimica Acta, 107, 664-
674
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—  G.S. Zhang, L. Cao, S. Ge, C.Y. Wang, C. E. Shaffer, C. D. Rahn, In Situ Measurement of Li-lon Battery Internal Temperature, 224th
ECS Meeting, Abstract #538, San Francisco, CA, USA, Oct. 27 - Nov. 01, 2013

—  W. Zhao, G. Luo, and C.Y. Wang, “Effect of Tab Design on Large-format Li-ion Cell Performance,” Journal of Power Sources 257 70-
79 (2014)

—  G.S. Zhang, L. Cao, S. Ge, C.Y. Wang, C. E. Shaffer, C. D. Rahn, “In Situ Measurement of Temperature Distribution in a Cylindrical
Li-ion Cell,” to be submitted (2014)

—  W. Zhao, G. Luo and CY Wang, “Modeling Nail Penetration Process in Large-Format Li-ion Cells,” submitted to J power sources
(2014)



Collaboration w/Other Institutions EfSroweR

Funding Agency

=3

+NREL
OAK CAEBAT Program Administrator
RIDGE

nal Labora
Open Archltecture Software

E4SPoOwWER

Project Lead — Software development and sales,
project administration.

PENNSTATE.
Johnson #)I(f E

Controls

Academic Partner —

Industrial Partner — testing,
validation, and feedback

Industrial Partner — testing,
validation, and feedback

materials testing and
detailed model validation




Future Work E4SFowER

* Wrap up final deliverables for this project
— M25: Final report on software
— M28: Deliver final software to partners
— M30: Final report on temperature distribution data
— M31: Final report on OAS compatibility
— M32: Final project report

* Qutside of this project
— Pack-level safety

— Abuse simulation - ‘\ 4
— Refined life models / / )
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Response to Previous Year Review ESFower

* Last year’s review did not include an individual
presentation from our team (CAEBAT overall project
presentation/review was given by NREL)
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Summary E/SrFoweER

* All main project goals have been met
— Development of ECT-coupled cell and pack model

— Materials database for commercially relevant materials, accurate over wide-
ranging T, c,, SOC, etc.

— Validated prediction of performance and active material utilization
— Validated safety models
— Validated life models

e Commercial partners (Ford, JCI)
— Have been using updated models in-house for several years
— Have given invaluable feedback and helped validate model

« Software 1s commercially available
 Meeting CAEBAT/DOE goals

— Helping to accelerate the adoption of automotive Li-ion battery
cells & packs

— Enabling technology for EV, PHEV
21





